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ABSTRPCT 

Excitation c r o s s  section for the doubly  ionized s ta tes  of argon, 
neon and krypton has been found for the process  where a fast  moving 
f r ee  electron impinges upon a neutral  a tom causing the neutral  a tom 
to go from t N  to ( t N - 3  - nP'I) in a very  shor t  tixie compared to the 
relaxation t ime of the ion. 

. .  
i l  



T A B L E  O F  CONTENTS 

Page 

I. I N T R  0 D U C TI 0 N 

11. CALCULATION 

C a s e  One 
C a s e  Two ___- 

C ONC L U  SI ONS 

R E F E R E N C E S  

ACKNOW LEDGEM E X T  

1 

i 

i 
9 

12 

13 

I -1 



EXCITATION CROSS SECTION FOR SOME O F  THE 
DOUBLY IONIZED STATES O F  ARGON, NEON 

AND KRYPTON B Y  FAST ELECTRONS 

I .  INTRODUCTION 

It has  been ~ h o w n ’ ~ ~ ~ ~  that the method of sudden perturbation can 
account f o r  the excitation of some of the excited s ta tes  of argon 11 in the 
pulsed argon laser. This method of calculation yields c o r r e c t  resu l t s  
only when the Hamiltonian changes f rom an initial s ta te  t o  a final s ta te  
in a very shor t  t ime compared to the relaxation time of the sys tem.  
In this method, the eigenfunctions of the unperturbed Hamiltonian a r e  
expanded in terms of the eigenfunctions of the perturbed system. In 
the problem that we a r e  considering, we a s sume  that a neutral  atom 
with a n  P outer shel l  configuration loses  m(m=2) of its P 
in  a very sho r t  t ime compared to the relaxation t ime of the atom, a f te r  
making a collision with a fast impinging electron.  
eigenfunction of the system consists of the product of a f r e e  electron 
wave function with that of the product of a f r ee  electron wave function 
with that of the bound atomic electrons.  After collision, the new eigen- 
functions a r e  the product of the wave function of ( m t l )  f r e e  electron, 
with those of P N - m  bound atomic electrons.  Two cases  a r e  considered. 
F o r  the first case ,  i t  is assumed that the atom makes  a collision with a 
fast-moving electron, loses two of i t s  N outer shel l  electrons,  and is 
simultaneously excited, i. e . ,  P -. ( -nP ) . There the atom is doubly 
ionized and excited at the same t ime.  F o r  the second case ,  it is assumed 
that two collisions a r e  involved, i.  e . ,  the atom makes  a collision and goes 
to  an  excited single ionized configuration (P1n -nP I ) ;  then, tho h another 

core  collision, it m a y  lose i t s  excited nP 
electrons.  
s ta te  o r  a s ta te  with relatively long life t ime.  
excitation c r o s s  sections will be found a r e  1 P3,+2 ,nP s”;’ PJ>, I P3, $2, nP 
‘Dz>and l t f , + 2 , n P s  ; 1 S o > w i t h + 2  = S , ’ D o r 2 P .  

5 

electrons,  

Before collision, the 

N- 2 
N - Y  electron o r  one of the l n  

This process  is  important when (llnN-2 -nP I )  is a metzstable 
The s ta tes  for  which 

4 

To  obtain the probability of production of any one of the new states ,  
we have to expend the unperturbed Hamiltonian eigenfunctions in t e r m s  
of the complete se t  of eigenfunctions of the new Hamiltonian. 
lap integrals  in these calculations involve those between electronic bound 
s t a t e s  before and af ter  collision and between bound and result ing f ree  
electronic s ta tes .  
integrals  a r e  proportional to the excitation c r o s s  section, whereas  the 
corresponding values for  the la t te r  s e t  a r e  proportional to the ionization 
c r o s s  section. 

The over- 

The absolute-square values of the fo rmer  se t  of 

Since experimental double ionization c r o s s  sections for 
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m o s t  of the atoms a r e  known, the excitation c r o s s  sect ion for case  one 
can  be calculated exactly. 

F o r  example, for  the 3p6 outershel l  configuration of neut ra l  
a rgon  to go to the 3p3 - 4p s ta te  a f t e r  coll ision with a 100 ev electron,  
we find a c ros s  section of 8 .9  X 

at tempt  to  find expressions for the c r o s s  sect ions of the var ious excited 
s t a t e s .  
quantum numbers ,  i . e . ,  s ta tes  of the f o r m  1PN-3+2J nP"s;+i>. 
noble gas a toms where N=6, i!=P"=1 we have $ 2  H 4 s J  2P a r  2D and $1 

the 12 possible combinations of $ 2  and $1 . Figure  1 .  

cm2 .  In what follows we sha l l  

These s t a t e s  a re  represented  by the i r  angular momentum 
F o r  

o r  . We sha l l  calculate c r o s s  sect ions f o r  all 3 can be p o , 1 , 2  

11. CALCULATION 

Case One 

We now a s s u m e  that  the atom makes  a collision with an  e lec t ron  
and loses  two of i ts  e lec t rons ,  simultaneously.  
pDssible excited s ta tes ,  we have to expand the unperturbed eigenfunctions 
l P N + 0 ;  Fli> in t e r m s  of the eigenfunctions of the per turbed Hamiltonian. 
This eigenfunction consis ts  of the product of I PN$o> bound wave function 
and the F1; f ree  electron wave function. 

In o r d e r  to  know the 

We have, a f t e r  expansion 

n, f 

where  l e ~ - 3 + 2 ; n e l I s ,  $1 '> i s  an  excited doubly ionized s ta te  of the 
atom, ne'' is the excited electron,  and 4, a r e  the co re  e lec t rons .  The 
subscr ip t  n indicates that  the radial  wave function of 
changes as the pr incipal  quantum number n of the excited e lec t ron  
a s s u m e s  different  values .  In Eq. ( l a ) ,  s stands for  the spin 11 2 of the 
electron,  a n d +  with o r  without supe r -  o r  subscr ip t  s tands for  the co r -  
responding angular wave functions. 
places Lz , S 2 ,  M L ~  and Ns2 , where L2 i s  the total orbi ta l  angular  
momentum, SZ i s  the total spin-angular momentum, and M L ~  and NS2 
a r e  the projections of L and S on the magnetic z -ax is .  
r ep resen t  the wave functions for  the th ree  f r ee  electrons a f t e r  the 
impact .  
F o r  Eq. ( 1 )  we have 

co re  electrons 

F o r  example,  in  e N - 3 $ , ,  +2 r e -  

Flf, F 2 f  and Fsf 

The summation in Eq. ( l a )  is over  all the possible f inal  s ta tes ,  F. 
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1 .  
I 
E 
I 
1 
I 
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1 
I 
I 
1 
1 
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1 
1 
I 
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f f 

To calculate these inetrix e lements ,  we f i r s t  expand the bound 
atomic wave function [ PN$,> in t e r m s  of i t s  paren ts  and grandparents  
and then decouple two electrons,  in other  words w e  have 

where  two electrons have been separa ted  f rom the c o r e .  
functions in Eq. (2a )  can be decoupled to  give us ,  

The eigen- 

where the symbol [x] = 2 x i  1, hn s tands f o r  Ln,  Sn,  ML, and Nsn .  
Replacing Eq. (2a) back in Eq. ( 1 )  we obtain 

3 



f 9,+1 

I 
I 

J 
In the above equation t h r  :il)solute square  value of the quantity in  b r a c e s  
( { } )  is proportional t o  t h e  do i ib l e  ionization probabili ty of the a tom.  
consists of the product o f  ,I]-. 1:iitially frec. elcactron a n d  two bound 
electrons wi th  the wri\ I '  f i . i n c - t 1 o n s  ( J f  thrcac. f l - c  c e l e c t  r u n s .  
one more  mat r ix  elenic>~!t rtArnLLlns to  be c : i lculattsd.  ;tnd that is the 
quantity 

It 

In Eq. (ZC),  



o r  

Of course,  the resul ts  of Eq.  (2d) could have been intuitively c l ea r  
except fo r  the coefficient in front of the integrals .  In Eq. (2e) fp(r) 
i s  the radial  wave function of one of the I P N+o> neutral  ground s ta te  
a toms;  fne(r) and f e n  a r e  the wave functions of the excited runing 
electron and the corresponding co re  electrons of the 1 PLJ-3+2, nP"s +1'> 

doubly ionized configuration. In Eqs . (Za) through (2c) the quantities 
( e  Nc+{ 1 e N'-  '9) are the coefficients of fractional parentage (6)  and the 
symbols in la rge  parentheses a r e  the usual  3 - j symbols.t 

The probability that the doubly ionized atom will be in an excited 
s ta te  of the form ltLN3+2, n t ' l s ,  +I> would be proportional to !ani2 
where 

This means we have to calculate the quantities i n  b races  of EqU (2c)  or, 
in other  words,  sum over expressions of the form <f2 I e s  Me Ms>, which 
a r e  the overlap integrals between the bound electronic s ta tes  and all the 
possible final s ta tes  of the free electron. We can, however, avoid these 
calculations by using the experimentally available total c r o s s  section 
data for  removing two electrons f rom the atom. 
double ionization c r o s s  section by Qtt(E), where E represents  the energy 
of the intial f r e e  electron state If,i>, then from Eqs. (Zc), (Ze), and (3a) 

If we represent  the 
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we have for  the excitat 'on c r o s s  section of the s ta te  l e N - 3 + 2 , n ~ " s J  
f rom the ground s ta te  f tN+o>,  a f te r  impinging with an electron having 
a kinetic energy E, 

where Qn(E) gives the excitation c r o s s  section for the 1PF-3+21  net ' s  ($1' 
configuration, the N-3 t electrons couple to  give $2 i .  e. ,  Lz , S2 ; 
then these angular momenta couple with P I '  to give L1, SI, MI, Ni  o r  $1 . 
F o r  the case of Noble gas a toms,  which a r e  of in te res t  to  this paper,  
p = e, = nil '  = 1, N = 6 and the only possible Lz Sz states  a r e  2D, P 
o r  *S.* The possible final L1 SI s ta tes  would be 'D, 'P o r  ' S .  
seen f rom Eq. (2e ) .  
down since in the case  of t 5  only one possible + state  can exist ,  namely 

This is 
Moreover, the summation over + in  Eq. (3b) breaks 

2P . - 
So far neither the coefficients of fractional parentage nor anything 

in Eqs. (3b) o r  (3c) gives u s  any information about the total angular 
momentum J = L t S of the excited s ta te  o r  i ts  excitation c r o s s  section. 
In the above example, for  the noble g a s  a toms we find that the only 
possible excited s ta tes ,  when two electrons a r e  removed from an  outer 
p6 shell, a r e  I t ' ? & ,  d " s ,  D > ,  It 3+2,  n t l l s ,  3P>,  o r  [ e '  '$2, ni ' ls ,  'S> , 
with 412 assuming any of the three possihle s ta tes  of t f 3  . 
~ D J  has a J = 2 and lSJ has a J = 0, but in  
of 1 ,  2 o r  0 .  In general ,  to find the probability of excitation for  any J 
we have to  change the order  of coupling of the angular momenta of the 
expres s ion in  Eq. ( 2 a )  f rom LS to j j  coupling, i .e . ,  

1 

In this example, 
PJ, J can a s sume  the value 

6 
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c 1 

In the above equations j 
9 -j symbol, and to distinguish the two separated electrons, for the 
purpose of summation, a sub cript i s  added. A s  in Eq. (2b) we can un- 
couple the eigenfunction ItNU'Ll SI J1 ;  11 Slj, LSJ ; 1 2  s 2  j, , JoMo> in 
terms of 3-j symbols and a product of the three wave functions, namely, 
lLN-%lSiJIM1 > IL i s i j lMj I  > 1 2 2  s2 j2  Mj2 > . Using instead the j j  
coupled eigenfunctions, Eq. (2c) becomes 

= 1,t sna the quantities in curly brackets a r e  the 
n. 
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[ summation ove r  a l l  final s ta tes  of the over lap  in tegra ls  and some  3 - j  
symbols] . 
In Eq. (4c)  we have added an ex t ra  index J1 to the coefficients anf to  
designate the total  angular momentum of the excited s t a t e .  
the l a s t  t e rm in bracke ts  is s imply the over lap  integrals  and is pro-  
portional to the double ionization c r o s s  section, and the f i r s t  portion 
gives the excitation probabili ty.  The excitation c r o s s  section to any 
s ta te  of the fo rm ltF-3 L2 S2 J 2 ;  n t l ' s j ,  JIM1> f r o m  the ground s ta te  
l t N + - >  is, 

As before,  

I' :: 
J J Z  

Q++(E) L ( O  , t n)  ' ) ( e ,  n t  ' I )  . 

F o r  the calculations of the radial  integrals ,  a self-consis tant  Har t r ee -  
Fock computer program in the S la te r  approximation was used, lo and 
the r e su l t s  f o r  neon, argon,  and krypton a r e  given in Table I .  As a n  
i l lustration, we have calculated the excitation c r o s s  section for  all the 
3p3-4p configuration of argon 111, and this i s  presented in Table 11. 
The total c r o s s  section f o r  having a 3p3 - 4 p  configuration a f t e r  coll ision 
with a 100 ev e lectron i s  about 0.88 and this is divided among 
all the possible angular momentum s t a t e s  permiss ib le  f rom the 3p3 -4p 
configuration. 
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Case Two 

Here we assume that the atom loses  one electron through collision, 
and assumes  an excited configuration of the form (P &-2, nP 1). 

through another collision, loses the excited nP1 electron o r  one of the 
P N-2 core  electrons to  assume a final ( P  N-3,  ne ") configuration, where 
N is the total number of electrons in  the valence shel l .  
the principle of the calculations for  case  one, we can now wr i te  the 
c r o s s  section without going through the detailed mathematics ,  the only 
difference being that one has  to go twice through equations of the form 
Eq- ( 2 C )  - 

Then, 

Having seen  

Figure  2 shows schematically what happens. 

In the second collision where the excited runnin w-$ctron is lost ,  
we have fo r  the excitation c ros s  section of the s ta te  1 fzm $ 2 ,  $ I >  

r 

where Qt(E) is the usual  single ionization c r o s s  section and Qf\re,(E') is 
the ionization c r o s s  section for removing the nP1 excited electron f rom 
the (Ppi,?d1) configuration. QnPl could be very  large a s  the excited nP1 
electron a s sumes  higher orbi ts .  
Eq. (6)  gives the overlap integrals for  the bound s ta tes  when af te r  a 
collision PNd(PK-2,  nel), while the second s e t  of t e integrals give the 
overlap integrals  for the (ex-', ne,) -(PfX ) - 
possible final s ta tes  a r e  exactly the same as those given in case  one, 
namely, [f3$z;mP2s,+1>, where $1 is a P, 'D, o r  a 1s s t a t e .  
and IV give the radial  integrals for the above two p rocesses .  

The f i r s t  se t  of the two integrals  in 

s 
3 mfz) situation. The 

Tables 111 
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NOW, if in  the second collision, instead of the excited electron a 
core  electron is removed, i .  e . ,  i f  ( e  nel) goes into the intermediate 
s ta te  ne), the total  orbi ta l  and spin angular momenta  of the final 
s ta tes  will not be  evident a s  in the previous cases .  We have to change 
the o rde r  of coupling of the electrons of the excited singly ionized atom. 
After having separated the electron which has  to be lost  f rom the core  
i . e . ,  by expressing the s ta te  in t e r m s  of coefficients of fractional 
parentage, 

we then change the o rde r  by first coupling the excited nPls e lectron 

to the L2 S2 core s ta tes  and then couple the separated Pins core  electron 
to the resultant s ta tes  to obtain the final LSJ s ta tes ,  i . e . ,  

-- 
L S  

where the quantities in la rge  curly brackets  a r e  the 6 - j  symbols 
we use  Eq. (7b) to calculate the overlap integrals between this singly 
ionized state and the doubly ionized s t a t e s .  
is ,  

Now 

The ma t r ix  element involved 
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I' 
1 
I 
I 
1 
1 
1 
I 
1 
I 
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1 
1 
I 
I 
R 
1 
I 
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where a replaces  all the 3- j  symbols and surrlmartions over  them. It 
-- is seen  that the only possible excited states are the 
LS. 
section for  all the states 

s ta tes ,  namely 
F r o m  Eqs (7b) and (7c we can now wr i te  the excitation c r o s s  -- J- 3 +z,mP3s q>, where 7 stands f o r  LS, 

J 

+ There Q~,,(E) is the c r o s s  section for  removin an electron from the 
core  of the singly ionized excited s ta te  of the ( P  In 2 ,  nP1) configuration. 
This c r o s s  section is proportional to the square-absolute.value of the 
overlap integrals  in Eq. (7c)  between bound and the f r ee  electrons.  
Table V gives the overlap integrals for  the bound atomic s ta tes  of 
Eq. (7c) for  neon, argon, and krypton and Tables V I  and VI1 gives the 
necessary  coefficients of fractional parentage f o r  the pN shells of the 
Noble gas a toms.  

%- 

F o r  the case  of Noble gas a toms,  we can a l so  determine the 

can be 'P when 

4 
possible 
F r o m  the tr iangular relations of the 6 - j  symbols 
4'2 = 4S, lY3[S, P, D] when 42 = ' P and finally 5 = '' 3[P, D] , when $2 = 'D. 

s ta tes  in Eq .  (7a) L=l,  S = 1 / 2 ,  @z i s  either s, 'P o r  'D. 
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. I  
111. CONCLUSIONS 

Two cases  of excitation have been discussed.  F o r  case  one, 
since the double ionization c r o s s  section is la rge" ,  i . e . ,  of the o r d e r  
of IO-" cm2 and because of the relatively la rge  overlap integrals ,  we 
notice that removing two electrons f rom the valence shel l  causes  an 
electron to go to an excited ne1' shel l  with a relatively high probability. 
F r o m  Table I we s e e  that this probability dec reases  as n increases .  

The probability of the excited electron to go to  continum, that is 
to say the atom to be tr iply ionized, after the removal  of two electrons,  
would be (1  - Z probability to go to  ne" excited shel l ) .  F o r  the case  of 
neon, we havenQftt(E) = 0.17 Q"+(E), for argon Qttt(E) = 0.045 Qttt 
(E) and f o r  krypton Q+++(E) = 0.04 Q+t (E) .  
f o r  tr iply ionizing the atom. 
ionization c ross  section of removing two electrons could possibly cause 
the atom to be r a the r  tr iply ionized. 

Qt++ is the c r o s s  section 
It i s  seen  that in the measurements  of 

F o r  case two,  we t reated two special si tuations.  Both of these 
situations a r e  not likely to occur in discharges of Noble gas atoms 
since the lifetime of the lower excited s ta tes  a r e  relatively short ;  
however, in atorns where the excited s ta tes  have longer l ifetimes 
this situation could become probable. 
s ta tes  of argon. 
and then relaxes to  the above ionized metastable  s ta te .  
of these states i s  l a rge ,  then it i s  quite possible that the atom becomes 
doubly ionized through these s ta tes .  
the population density of these s ta tes  and found them to be quite l a rge .  

An example is the 3p4[ 3p] -3d2 F 
In this case,  the atom becomes ionized and excited 

If the population 

Labuda, e t .  a1.l' , have measured  

12 
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TABLE I1 
EXCITATION CROSS SECTION FOR 1 p392 4 p + p  

STATES OF ARGON++ FOR CASE ONE AT 
ELECTRON ENERGIES OF ABOUT 100 E V .  

Q++(lOO ev) = 2.96  x cm (ref 10) 2 

3 4  2 Q(l(3p ) S , 4 p J  3P1>) = 0.57 X cm 

2 Q(l(3p3) 4 S J 4 p ,  3P0>) = 0.19 X cm 

Q(1(3p3) 2D,4pJ 3P1>) = 0.72  cm 2 

2 Q(( (3p3)  2D,4p,  3 P d )  = 0.25  X cm 

1 2 Q( [ ( 3 p 3 )  2 P , 4 p ,  D2>) = U.72 X cm 

2 Q(l(3p3) 'P,4p,  3Pz>) = 0.72 A cm 

2 O ( / ( 3 p 3 )  2 P , 4 p J  3 ~ 0 > )  = 0.13 X 

Q( 1 (3p3 1 'P, 4p9 ' so>) = 0.57  X 10 - I 9  

cm 

cm 
2 
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TABLE 111 

OVERLAP INTEGRALS FOR THE PROCESS tNd+F-2 .n t1  
Q) a 

~~ 

Neon 0.980 -0. 1308 -0.0525 -0.0290 

Argon 0. 985 - 0 .  1195 -0.0466 -0.0247 

Krypton 0. 985 -0. 1165 -0.04515 -0. 0237 
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TABLE IV 

03 1 

J 0 

2p3-2p Zp3-3p Zp3-4p 2p3-5P 2p3 -6p 

zP4 - zP 0.9894 -0.1177 -0.0452 -0.0247 -0.0153 
2p4 - 3p 0.9996 -0.0476 -0,0227 -0.0133 -0.0088 
zP4 -4p 0.9992 -0.0416 -0.0213 -0.0128 -0.0086 
zP4 -5p 0.9992 -0.0397 -0.0209 -0.0127 -0.0085 
2p4 -6p 0.9992 -0.0390 -0.0207 -0.0126 -0.0085 

ArIII 
ArII \ 3p3-3p 3p3-4p 3p3-5p 3p3-6p 3p3 -7p 

3p4 -3p 0.9912 -0.1072 -0.03'?8 -0.0208 -0.0130 
3p4 -4p 0.9996 -0.0435 -0.0205 -0.0116 -0.007 5 
3p4 -5p 0.9992 -0.0350 -0.0190 -0.0113 -0.0074 
3p4 -6p 0.9992 -0.0323 -0.0184 -0.0111 -0.0074 
3p4 -7p 0.9988 -0.0311 -0.0182 -0.0111 -0.0074 

4p3 -4p 4p3 -5p 4p3 -6p 4p3 -7p 4p3 - 8p 

4p4 -4p 0.9980 -0.1035 -0.0384 -0.0201 -0.0123 
4p4 -5p 0.9996 -0.0417 -0.0198 -0.0112 - 0.007 1 
4p4 -6p 0.9992 -0.0329 -0.0182 -0.0108 -0.0071 
4p4 -7p 0.9988 -0.0297 -0.0176 -0.0107 -0.0071 
4p4 - 8p 0.9988 -0.0284 -0.0173 -0.0107 -0.007 1 
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TABLE V 
OVERLAP INTEGRALS FOR THE CASE 

(Iin 1 di)- (Pi, d 1 )  -. (I, m ~ 3 )  
N- 2 N- 3 N- 3 

2p3-2p 2p3 -3p 2p3 -4p 2p3 - 5p 2p3 -6p 

zP4 -2p 0 . 9894 -0 1177 - 0.0452 -0.0247 -0.0153 
2p4 - 3p - -  0.9341 -0.3680 -0.0842 -0.0477 

-2p4 -4p - -  - -  0.8134 -0.5405 -0.0704 
zP4 -5p - -  - -  - -  0.6378 -0.7021 

0.4223 - -  - -  - -  2p4 -6p - -  

2p3 -3p 2p3 -4p 2P3 - 5P 2p3 -6p 2p3 -7p 

3p4 -3p 0.9912 -0.1072 -0.0398 -0.0208 -0.0130 
3p4 -4p - -  . 9477 - -3402 -0.0768 -0.0438 
3p4 - 5p - -  - -  ,8444 -0.5102 -0.0653 

- -  d.6828 -0.664 3p4 -6p - -  - -  
3p4 -7p - -  - -  - -  - -  0.4702 

4p3 -4p  4p3 - 5p 4p3 - 6p 4p3 -7p 4p3 -8p  

4p4 -4p 0.9920 -0.1035 - .0389 -0.0201 -0.0123 

4P4 -6.P - -  - -  @ - 85.27 -0.4794 -0.0634 

4p4 -8p - -  - -  - -  - -  0.4919 

4p4 - 5p - -  0.9555 -0.3329 -0.0742 -0.0425 

4p4 -7p - -  - -  - -  0.6954 -0,6557 

19 



TABLE VI 

COEFFICIENTS O F  FRACTIONAL PARENTAGE 

FOR STATES p5 + WITH p4+1 PARENTS 

P5 +/P4+1 ' S  3P ' D  

2 P  

TABLE VI1 

COEFFICIENTS O F  FRACTIONAL PARENTAGE 

FOR STATES p4Q1 WITH p 3 h  PARENTS 

4 s  2 P  Z D  P4 +i / P 3  + 3  

3P 

' D  

' S  
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Fig. 1. An electron colliding with a neut ra l  Noble gas  a tom 
resulting in three f r e e  electrons and an excited 
doubly ionized atom. For  argon i f  the colliding 
electron has  a kinetic energy of 100 ev the c r o s s  
section for the 3p3 -4p configuration is 
8 . 9  x i o +  c m .  2 
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e+ 0 

UB 
P4 

Fig.  2. Here the p rocess  of excitation is in two steps.  
(a) 

(b) 

The atom loses  an elc.ctron and becomes 
excited to a p' -nP configuration. 
The excited ionized a tom m a k e s  another 
collision, loses  i ts  cbxcited e lec t ron  
and then re laxes  to a doubly ionized 
excited state.  
The excited ionized a tom through coll ision 
loses  one of i t s  co re  e lectrons and 
then re laxes  to  a doubly ionized 
excited state. 

( c )  
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